RSS Hírfolyam

Blog hozzászólások '2025' 'június'

Hogyan válasszak kazánt? A fűtési rendszer alapjai -1. rész
Hogyan válasszak kazánt? A fűtési rendszer alapjai -1. rész

Háromrészes cikksorozatunkkal azoknak kívánunk segíteni, akik építkezés előtt állnak, és a fűtési rendszerüket tudatosan, energiahatékonyan szeretnék kialakítani. Sorozatunk első részében a kazánválasztásról lesz szó, hiszen ez az egyik legmeghatározóbb eleme egy jól működő, hosszú távon is gazdaságos fűtési rendszernek.

 

Építkezni szeretnék! Kihez forduljak, ki segít eldönteni, mi számomra a legmegfelelőbb?

I. rész – A kazánválasztás alapjai

 

Miért fontos a korai tervezés?

Az egyik legfontosabb kérdés, amit időben fel kell tennünk:
„Ki segíthet nekem abban, hogy a legjobb döntést hozzam meg?”

Minél hamarabb tesszük fel ezt a kérdést, annál több lehetőség áll előttünk. A késlekedés gyakran nem is pénzkérdés, hanem az információ és előrelátás hiánya. Sokan az építész vagy belsőépítész kezébe adják a döntéseket, és ez sok esetben működik is – de csak akkor, ha a gépészeti szempontok is időben bekerülnek a tervezésbe.

A legfontosabb tanács: ne csak építésszel konzultáljunk, hanem már a tervezés legelső fázisában kérjük ki épületgépész szakember véleményét is. A telek adottságai, a beépíthetőség és az energetikai célok együttesen határozzák meg, milyen rendszer lesz ideális számunkra.

 

Az épületgépészet nem utólagos kérdés

Sokan csak az építési engedély után, vagy a szerkezetkész állapotban kezdenek el a gépészeti kérdésekkel foglalkozni. Ez sajnos gyakran kompromisszumokhoz vezet – olyan döntéseket kell meghozni, amelyek korábban még szabadon alakíthatók lettek volna.

 

Milyen rendszert válasszunk?

Számos fűtési rendszer létezik, ezek mind más-más előnyöket kínálnak. Egyes megoldások az épület szerkezeti kialakítását is befolyásolhatják – például a passzív napenergia hasznosítása. Az egyes részfeladatok (fűtés, melegvíz, hűtés) össze is fonódhatnak, és előfordulhat, hogy egyetlen készülék több funkciót is ellát.

 

A fűtési rendszer három fő eleme

 

  1. Hőtermelő berendezés (pl. kazán, hőszivattyú, napkollektor)
  2. Hőleadó rendszer (radiátor, padlófűtés stb.)
  3. Szabályozó és elosztó rendszer (csövek, automatika)

 

A kazán kiválasztása – A fő kérdések

A megfelelő kazán kiválasztásához több kérdésre is válaszolnunk kell:

  • Milyen energiahordozót használunk? (földgáz, PB gáz, fa, szén stb.)
  • Csak fűtésre használjuk, vagy melegvizet is szeretnénk előállítani vele?
  • Álló vagy fali készülék helyezhető el a tervezett térben?
  • Hogyan történik az égéstermék elvezetése és a levegő-utánpótlás?

viessmann kazán

A melegvíz-ellátás komfortfokozatai

 

  1. Kombi kazán
    – Egyszerű, kompakt megoldás, de csak korlátozott melegvíz-ellátásra képes, hőmérséklet-ingadozással.
  2. Tárolós kazán
    – Nagyobb komfortot nyújt, stabilabb vízhőmérséklettel és több csapoló egyidejű ellátására is képes.
  3. Hőközpont + különálló tároló
    – Magas igényekhez ideális, akár több hőforrást is kezelni tud, szinte korlátlan melegvíz-mennyiséggel.

 

A kazánteljesítmény meghatározása – Ne becsüljünk, számoljunk!

A kazán kiválasztása nem érzés, hanem számítás kérdése. A legnagyobb hiba, amit elkövethetünk, az alul- vagy túlméretezés.

Gyakran alkalmaznak egyszerűsített számításokat (pl. légköbméter x fajlagos érték), ám ezek csupán becslések. A pontos hőszükséglet-számítás figyelembe veszi:

  • az épület szerkezeti elemeinek hőátbocsátását,
  • a helyiségek elvárt hőmérsékletét,
  • a napsugárzásból és belső hőforrásokból származó nyereséget.

Túlméretezés = felesleges beruházás és folyamatos többletfogyasztás.

 

Melyik kazánt válasszam?

A válasz attól is függ, milyen igényeink vannak és milyen ár-érték arányra törekszünk. Ahogyan az autóknál is van különbség egy Trabant és egy Mercedes között, úgy a kazánok világában is létezik technológiai és minőségi eltérés.

A Megatherm kínálatában minden igényre található kazán, az alaptól a prémium kategóriáig.
Széles választékunknak köszönhetően valóban a felhasználóhoz igazítható megoldásokat tudunk nyújtani.

 

Összefoglalás

 

  • A gépészeti tervezést kezdjük el időben, még az építészeti tervek előtt!
  • Kérjük ki szakember véleményét, ne csak az építészét.
  • A kazánválasztás ne márkanév, hanem műszaki tartalom alapján történjen!
  • Bízzuk a választást hozzáértő tanácsadókra, akik a lehetőségek és az igények ismeretében tudnak segíteni.

 

Folytatjuk sorozatunkat a fűtési rendszerek második nagy elemével: a hőleadó rendszerek kiválasztásával.

Gázkazán hatásfoka 100% felett? Lehetséges?
Gázkazán hatásfoka 100% felett? Lehetséges?

Blogcikkünkben annak járunk utána, hogy hogyan lehetséges egy gázkazán 100% feletti hatásfoka. Elsőre valószerűtlennek tűnik ez az állítás, de majd meglátják, mégis lehetséges.

 

Alapfogalmak

Ahhoz, hogy ez érthetővé váljon az olvasó számára ismerni kell néhány - a fűtéstechnikában, illetve tüzeléstechnikában használatos - fogalmat.

A kazán hatásfok (általánosságban): a kazán teljesítményének és a befektetett energiának a viszonya, vagyis a fűtőberendezésből a hőhordozó közeg által nyert teljesítmény, és a tüzelőanyaggal a kazánba juttatott teljesítmény hányadosa. (A mi esetünkben a hőhordozó közeg víz, a tüzelőanyag földgáz, így a kazán típusa gázkazán.)

Égéshő: a gáz elégetésekor keletkezett összes hőmennyiség.

Fűtőérték: a gáz elégetésekor keletkezett hasznosítható hőmennyiség. Ezt veszik figyelembe a hatásfok számításánál, mint befektetett energiát.

 

A gázkazán hatásfoka a korábbi vízfűtési rendszereknél

A korábbi vízfűtési rendszereknél az előremenő fűtővíz hőmérsékleténél a 90°C volt a mérvadó. Az ilyen feltételek mellett üzemelő gázkazánok esetében a 85%-ot elért hatásfok már jó eredménynek számított. Az említett 90°C-os hőmérséklet megválasztása, viszont nem volt véletlenszerű. Ennek egyik oka, hogy a gáz elégetésekor az égéstermékben (bizonyos kémiai reakciók következtében) nedvesség (vízgőz) is keletkezik. Ahhoz, hogy ez a nedvességtartalom ne okozzon károkat a kazánban, az égésterméknek olyan hőmérsékletűnek kell lennie, hogy a keletkezett vízgőz el tudjon párologni. Vagyis ilyen esetekben a keletkezett füstgáz hőmérséklete olyan magas, hogy a benne található vízgőz nem tud kiválni (lecsapódni), hanem távozik az égéstermékkel együtt. Ez az elpárologtatott vízgőz viszont jelentős hőtartalommal (rejtett hő) rendelkezik, amely hasznosítatlanul „elillan”. Magában, csak az így kialakult veszteség mértéke - földgázzal való tüzelés esetén - kb. 11%. (Természetesen egyéb más típusú veszteségek is keletkeznek egy tüzeléstechnikai folyamatban, amelyekkel itt most nem foglalkozom.)

 

Fejlődő kazán hatásfok

A technikai fejlődések következtében, a napjainkban használatos gázkazánok hatásfoka átlagosan kb. 92-93% körüli értékeken mozog. (Ezek az ún. kishőmérsékletű melegvíz kazánok.) Amennyiben modulációs (folyamatos lángszabályzású), vagy kétfokozatú gázégővel vannak felszerelve elérhető akár a 95-96%-os teljesítménymutató is. A kialakításbeli különbségek mellett, a működési elv nem sokban tér el a korábbi berendezésektől. A maximális előremenő hőmérséklet viszont csak 75°C lehet. A fentebb már említett 11%-os veszteség még ebben az esetben is kimutatható, mert az ilyen készülékek esetében is az égéstermékkel együtt távozik a gáz elégetésekor keletkezett vízgőz. 

 

A gázkazán hatásfoka 100% felett

radiant gázkazánVégül a feltett kérdésre a választ az eddig már annyiszor emlegetett 11% adja meg, amely lényegében a földgáz esetében kiszámított égéshő, és fűtőérték adatok közötti különbség százalékban kifejezve. A napjainkban egyre inkább teret hódító kondenzációs kazánok tudják elérni a 100% feletti értéket, az eddig veszteségként kezelt 11% jelentős részének a hasznosításával. A működési elvük lényege, hogy nagy felületű, vagy többfokozatú hőcserélővel vannak ellátva, amelyek - kivonják - az égéstermékben található érzékelhető meleget, és a keletkezett vízgőz rejtett hőjét is. A folyamat elve, hogy a füstgáz egy lehűlési fázison megy keresztül (hőmérsékletei értéke egy ún. harmatponti hőfok alá csökken), ha ez bekövetkezik az égéstermékben található vízgőz kiválik (lecsapódik). Az így keletkezett (kondenzálódott) víz hőjét (kondenzációs hő) a fűtővíz veheti fel. Természetesen ez a folyamat sem veszteségmentes, mert itt is kialakul kb. 2% füstgázveszteség, de még így is marad 9% eddig még nem hasznosított energia.

A lényeg: az égetéskor keletkezett nedvesség gőz halmazállapotú, de a kondenzáció után már víz formájában jelenik meg, viszont a hőmérséklete így hasznosítható. Tehát mondhatjuk: "Az energia nem vész el csak átalakul."

A 100% feletti érték pedig abból adódik, hogy a gyártók a hatásfok számításakor a befektetett energia érték alatt a földgáz fűtőértékét veszik figyelembe (ugyanúgy mint korábban). Ez az érték nem tartalmazza a "kondenzációs meleget", mert a "hagyományos" kazánoknál korábban az égéskor keletkezett nedvességtartalmat veszteségként értelmezték, és így ezzel nem is számoltak.

 

Konklúzió

Végeredményül, ha egy gyártó legjobb készüléke, mondjuk eléri a 99%-os hatásfokot (hagyományos értelemben véve), és ehhez hozzáadjuk a kondenzáció által nyerhető plusz 9%-ot, az eredmény lehet akár 108% is. 

Fontos még megjegyezni, hogy a kondenzációs kazánok esetében nem a hatásfok értékével minősítik a készülékeket, hanem az ún. kazánkihasználtsági fokkal jellemzik, de ez már egy másik történet...

Drotár András

Az Országház egyedi fűtési-hűtési rendszere
Az Országház egyedi fűtési-hűtési rendszere

Amikor meglátja a magyar Országházat, gondolt-e valaha arra, mégis hogyan fűtik, hűtik ezt a hatalmas épületet?

A Steindl Imre tervezte az akkoriban is hatalmas összegnek számító 38 000 000 osztrák–magyar koronáért megépített, 96 méter magas, összesen közel 18 ezer négyzetméteren elterülő, Európa második, a világ harmadik legnagyobb parlamenti épületét, ami a világ egyik első távfűtési rendszerével fűtötték fel.
A tervezőnél elképzelhetetlen volt, hogy kéményekkel oldják meg a neogótikus stílusú épület fűtését, ráadásul logisztikai szempontból sem volt kivitelezhető, hogy naponta beszállítsák a szenet az épületbe.

 

Az Országház fűtésrendszere

A hőveszteség csökkentése érdekében az épület felfűtését nem melegvízzel, hanem gőzfűtéssel oldották meg. A hatalmas beruházás részeként a fűtési rendszer innovatív megoldásáról is gondoskodni kellett, így az őrség helységei mögött egy közös kazánházat hoztak létre, két legyet ütve egy csapásra:

- A kazánház integrálása a fűtőanyag könnyebb kezelését tette lehetővé, egyben megoldotta a kémények esztétikus megépítését, a füstgázok el, illetve kivezetését.
- A hőtermelő egységek és a hőleadó eszközök távol egymástól kerültek kialakításra, így valósítva meg Európa egyik első távfűtési rendszerét.

Az 1987-es átalakítást követően az eredeti fűtéshez három, plusz egy tartalék földgáztüzelésű gőzkazánt telepítettek, amelyek immáron alkalmasak voltak olajtüzelésre is.

Beszéljenek kicsit a számok, a kazánok egyenként 3 tonna/óra gőz előállítására képesek.

A téli fagyokban, pld. -15 °C-os külső hőmérsékletnél 9 tonna/óra gőzt állítanak elő, ez nagyságrendileg 5500 kW fűtési teljesítményt jelent.

Az Országház épületében, speciálisan tervezett radiátorok vannak, továbbá a fűtést légfűtés segíti.

 

Az Országház fűtésrendszerének korszerűsítése

Miután 2011-ben döntés született a Kossuth tér átalakításáról, az épület fűtésrendszerét is újra kellett gondolni. Mivel a tér északi oldalán mélygarázs kialakítására volt igény, azért a kazánházat és az Országház épületét összekötő közműalagút áttervezésére is szükség volt. Ez az alagút így a mélygarázsig vezet, majd a levegőt a garázson át csövek segítségével továbbítják a különböző helyiségekbe.

A korszerűsítést követően a légkezelő irányításáról már számítógép gondoskodik. Egyébként az épület jellegéből fakadóan a modern épületgépészeti megoldások működtetése meglehetősen nehézkes.

Légfűtést alkalmaznak többek között az üléstermek és azok folyosóinak fűtésére. Ennek folyamán 1,5 bar túlnyomású gőzt hoznak létre, majd a hőt egymással párhuzamosan bekötött hőcserélők, öntöttvas bordáscsövek segítségével adják le.

Érdekesség, hogy a párhuzamosan bekötött hőcserélők miatt a fűtőfelületet működését 1/3-2/3 arányban tudják szabályozni. Ennek segítségével szabályozható a bejövő levegő mennyisége, így a külső hőmérséklet alapján, vagy az egyik, vagy a másik, illetve a teljes rendszer működtethető.

A helységek fűtését a fűtési nyílásoknál zsalukkal is lehet szabályozni.
Az épületben található nagy terek miatt hatalmas, például az ülésteremnél húszezer m3/óra teljesítményre van szükség.

 

Az elhasznált levegő elvezetése

Hogyan oldják meg az elhasznált levegő elvezetését?
Nagyon egyszerűen, a gravitációs elv alapján a padlószinten elhelyezett elvezető nyílásokon keresztül juttatják ki a helyiségből.

 

Az Országház hűtési rendszere

A fűtési rendszeren kívül a hűtés is egy nagy épületgépészeti kihívás.
Igaz, hogy az épület önmagában, a konstrukció miatt – vastag, nagy falak, hidegburkolat - elvileg a nagy melegben is hűvös marad, azonban ez önmagában még nem oldja meg a levegő cseréjét.

Korábban a már említett levegőztető rendszert hűtési üzemmódra állítva a légfolyosókba jeget, jégtáblákat csúsztattak. A budapesti közbeszéd szerint (egy fajta városi legendaként) a jeget a megfagyott Dunából vételezték, majd a meleg időkben felhasználták azokat, ki tudja, így volt-e? :)

A próbák alapján ez a gyakorlatban maximum 1 °C-ot jelentett, tehát nagy hatásfoka nem volt.

Építészeti és épületgépészeti szempontból is meglehetősen nagy problémát jelent az épület hűtése. A modern hűtési rendszerek telepítése igen nehézkes.

Jelenleg a teljes épületben összesen 12 splitklíma van, jól eldugott kültéri egységekkel, amelyek jellemzően az irodahelyiségek levegőjét kezelik.

 

Nézze meg Ön is

Érdemes elmenni megnézni az Országházat, nem csak a szépsége és a lenyűgöző építészete miatt, hanem az épületgépészeti megoldásai miatt is. Az Országház azon kívül, hogy szép és az építése idejében a kor csúcsát jelentette, a modern kor mérnökeinek nagy fejtörést okozott, hogy a meglévő keretekbe hogyan lehet optimalizálni az épület klimatizálását.

Nagy kihívás volt, van és lesz!